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New second- and third-order algorithms are presented for cal-
culating translating and rotating steady-state solutions of the 2D
incompressible Euler equations (which we call V-states). These are
plecewlise constant reglons of vorticity and the contours bounding
';j them are obtained by solving iteratively a nonlinear integro-differential
si equation. New limiting contours with corners are obtained and compared
: with local analytical solutions. The precise results correct mistakes

- for limiting contours that were previously given.
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STEADY-STATE SOLUTIONS OF THE EULER EQUATIONS IN TWO DIMENSIONS:
ROTATING AND TRANSLATING V-STATES WITH LIMITING CASES
I. NUMERICAL ALGORITHMS AND RESULTS

#
H. M. Wu , E. A. Overman, II, and N. J. Zabusky

Institute for Computational Mathematics and Applications
Department of Mathematics and Statistics
University of Pittsburgh
Pittsburgh, PA 15261

1. INTRODUCTION

Solutions of the two-dimensional incompressible Euler equations
will elucldate propertles of very large Reynold's number flows, as
may occur in planetary atmospheres and oceans. The method of contour
dynamics, introduced by Zabusky, Hughes and Roberts {l], provides a
computationally convenlent approach because a two-dimensional problem
is reduced to one-dimension. That 1s; in contour dynamics the sources
of the flow are piecewise-constant regions of vorticity, which we call
FAVR's (finite area vortex regions) or, equivalently, the contours
bounding these regions.

The parameters that describe the range of existence and stability
of steady-state FAVR configurations may elucidate properties of these
flows. Kirchoff [2] found that an elliptical FAVR was a steady-state
solution and Love [3] investigated its stability. No other closed
form solutions have been found. Deem and Zabusky [U] found new steady-

state FAVR configurations by solving numerically a nonlinear integro-

.Pornunont Address: Computer Center, Academia Sinica, Beijing, China.
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differentlal equation for the contours using a Newton-Raphson pro-
cedure. For example, they found several isolated rotating states of
m-fold symmetry that are bifurcations from harmonic waves on a cir-
cular FAVR and one isolated symmetrically-shaped dipolar (1i.e.,
oppositely-signed vorticity) translating state. Examples are sketched
in Flg. 1. They considered these regions of plecewise-constant
vorticity as members of larger sets of steady-state solutions and referred
to them generally as "V-states". Saffman and colleagues also applied
this technique to calculate shapes of doubly-connected rotating V-states
{5] and periodic states modeling free shear layers [6] and wakes [T7].
Pierrehumbert [8] applied an efficient first-order relaxation method
and obtained twelve members of the set of symmetrically-shaped dipolar
translating states. Pierrehumbert and Widnall [9] also applied this
algorithm to calculate free sheaf layer models. Burbea and Landau [10)
aﬁplied the same algorithm aﬁd obfained further examples of m-fold
symmetric rotsting V-states for 3 < m < 6. In both [8] and [10] the

limiting V-states, where the contour 1is nonanalytic, are defective. [

This occurs because thelr algorithms seem unable to handle singular and
near-singular contours and because the spatial resolution is inadequate
in regions of large curvature. In the latter paper, this results in
errors in the numerical calculation of the parameter range of existence
of rotating V-states. The analytical calculation by Burbea [1l1] of
this range 1s also incorrect and both calculations are discussed in
Section 6.

In this paper we preszent a new, fast, accurate and computationally
efficient algorithm which requires about the same number of iterations
to converge as those described above and is capable of treating the limiting

V-states. Our numerical results are compared with a local analysis in
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the neighborhood of nonanalyticity. For the translating V-state,
there are two possible limiting cases: the two regions may touch

at one point or they may have a common bocundary. Analytically, we
have been able to exclude the former case. For the latter case we
have established analytically that the two (one-sided) tangent angles

at a nonanalytical point may differ only by n/2 (i.e., a corner).

Numerically, we have confirmed the existence of this solution as
shown in Fig. 4b. For the rotating V-states we have established
analytically that the tangent angles at a nonanalytical point may
differ only by 0 (i.e., thg tangent angle is continuouat) or =w/2.

Numerically, we have confirmed the existence of the w/2 corner for

3 <m< 6 as shown in Fig. 7.

In a recent letter, Saffman and Tanveer [12] also did a local
analysis of the limiting translating case and obtained a =/2 corner.
They also used numerical methods to calculate this state, but only
provide a gross figure and insufficient information to allow a detailed

comparison of results.

In Secticn 2 we present analytical preliminaries and derive two
nonlinear integro-differential equations for the boundary which are
the basls for our new second- and third-order accurate algorithms. 1In

Section 3 we analyze the limiting cases in regions where a contour may

become non-analytical and prove the claims made above. In Section U
\ we present the discretized versions of the integro-differential equations é
and iterative algorithms for obtaining both translating and rotating V-
states. In Sections 5 and 6 we discuss properties of the numerical
solutions for translating and rotating V-states, respectively. 1In both

cases, magnified views of the contours are given in the region of




———t

!

S e et O T X s
A P sl

nonanalytical behavior and they are compared to the local solutions

of Section 3. We also present a thorough discussion of the sensitivity

of the results in the neighborhood of nonanalytical points to:

algorithms; discretization procedures; error criteria; and boundary

conditions.

2. THE INTEGRO-DIFFERENTIAL EQUATIONS FOR V-STATES

The Euler equations can be written in vorticity-stream function

form as
Wy + uw + vmy = 0,
where
Ay = -w,
and

(u,V) 5 ('py ’-wx) .
If the vorticity is represented by a set of Nc plecewlse

functions of strength wJ in regions DJ with boundaries

can express the stream function as

NC
v(x,y) = w, ” G(x-£,y~-n)d&dn,
J=1 DJ

domain

(2.1a)
(2.1b)

(2.1le)

constant

8DJ, we

- (2.2) 7

where G 48 the Green's function for the Laplacian in the unbounded

0(2-£,7-n) =21 10gl(x-6)2 + (y-m)21}/2 =2m) 1108 .

(2.3)

-,

s
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If Green's theorem is applied to the result of substituting (2.2)
into (2.1lc) we obtain an expression for the velocity as a sum over
the Nc contour integrals, namely

¢
(u,v) = (ulx,y),vix,y)) = (211)'1 ) [w]J J log 2£(d4&,dn), (2.4)
J=1 aDJ
where [“33 is the jump in vorticity (outside-inside) at aDJ and
where the dependence on time has been suppressed. If we integrate
by parts we obtain

NC
(u,v) = (2m)~% [, jan £ (x-¢,y-n)at. (2.5)

J=1 1

The contours are assumed to be plecewise Liapounov, where a Liapounov
curve is one which possesses a unique continuous tangent angle, a,
but not necessarily a curvature, at each point [13,14]. Thus, we
require that each contour consists of a finite number of segments,
each of which possess a unique a at every point but may have an
infinite curvature at the ends.

Kelvin's theorem requires that a particle on the boundary remains

on the boundary. Hence, for steady-state solutions

n

g ° !barticle (2.6)

-a- !boundary'

where Yparticle " (u,v)aD and [ 1is the outward normal to the con-

tour. For translating V-states (2.6) can be written as

u sin a - (v-V)cos a = 0, (x,y) € 3D, and 3D,, (2.7T)

e s b .




o
.

where V 1s the translational speed (the velocity is in the y-direction

from Fig. la). For rotating V-states (2.6) can be written as
u sin a - v cos o = -QR dR/ds, (x,y) € 3D, (2.7R)

where q 1s the angular veloclty of the state, s 1s the arclength,
and R(s) 1s the radius from the origin to the contour as shown

in Fig. 1b. Note that for simplicity in (2.7) and henceforth we
label equations with "T" (translating) or "R" (rotating) according
to the state being considered. We now assume that the contours are
"starshaped", where the single-valued R(8) is defined with respect

to a convenient origin as shown in Fig. 1, so that

(x,y) = (R(8)cos & + Xy R(8)sin @),

where (2.8)
R(8) = [(x(8) - x )2 + y2(e)]*/2

(xo = 0 for the rotating case). Hence, (2.7) becomes

u dy/48 - (v-V)dx/de = 0, (x,y¥) € D, or 23D,, ' (2.97)

or

u dy/dé - v dx/de + QR AR/dé = 0, (x,y) e 3D. (2.9R)

Also, we can use (2.8) to write (2.9) explicitly in terms of R(9)

dR/48 = )R, (2.10)

el




pal Y390

L]

where

A = [(V-v)sin 6 -~ u cos 8]1/[(V-v)cos 8 + u sin 6] (2.111)
or

A= -[ucos 8 + v sin 8]/[u sin 8 - v cos 6 + QR]. (2.11R)

As discussed in Section 4 we will use (2.9) for our second-order
scheme and (2.10) for our third-order scheme.

An alternatlive "stream function" form of the integral equatlons
is obtained by writing (2.9) as

(ayw)(dy/de) + (V + 3xw)(dx/de) =0, (x,y) € 3D; or 3D (2.12T)

2’

or

(ayw)(dy/de) + (axw)(dx/de) + QR dR/d® = 0, r = R(8), (r,8) e 3D,

(2.12R)
and integrating to obtain
v(x,y) + Vx = °J’ (x,¥) ¢ aDJ, J=11or 2, A-(2.13T)
or
¥(r,8) + (@/2)R%(8) = ¢, r = R(8), (r,8) e 3D. (2.13R)

Pierrehumbert [8] used (2.13T) and Burbea and Landau [1§ used (2.13R)
to obtain steady-state solutions, whereas we use the "velocity" form
as described above. 3

In this paper we solve two classes of problems:




PROBLEM T: (symmetric dipolar translating V-state)

This state is symmetric about both axes as shown in Fig. la with
vorticity w, = +1 and wy, = =1. Then, given Xg = 1 and 0 < X, < 1

find R(8) and V that satisfy (2.9T) or (2.10) with (2.11T).

PROBLEM R: (m-fold symmetric rotating V-state)

This state with vorticity +1 has m identical ser *s each of
which has two reflectionally symmetric subsectors as shc - .n Fig. 1b
for m = 3. Then, given m, Ry = R(w/m - % m) =1 and R, = R(-w/2) > 1
find R(®) and Q that satisfy (2.9R) or (2.10) with (2.11R).




3. ANALYSIS FOR LIMITING V-STATES

3.1 Introduction

In this section we summarize the local analysls of V-states, pre-
sented in detail elsewhere [15]. We use a local expansion to obtain
the equation for the boundary of a symmetric dipolar translating or
m-fold symmetric rotating V-state in the neighborhood of a possible
singularity. The analysls provides a necessary conditlon for the
behavior of the boundary. Namely, the difference in tangent angles
at a singular point can be only =w/2 (i.e., a corner) or, for the
rotating case, 0 (1.e., the tangent angle is continuous). For the
) corner V-states we obtain the local equations of the boundary and
compare them with the numerical results in Sections 5 and 6. 1In
Section 3.4 the analysis is applied to Kirchoff's elliptical vortex
to validate the procedure. l

fhe general method of analysis is as follows. For convenlence we
use polar coordinates, (r,e), with the singularity at the origin. As
shown in Fig. 2 we assume that the V-state can be orilented so that
it 1is symmetric about the y-axis and lies in the upper half plane
(1.e., the vorticity on the negative y-axis is 0). We do all cal-

T TImee rwig s

culations in the right half-plane, i.e., -7/2 < 8 < m/2, using symmetry

to complete the V-state. We assume in some neighborhood of the origin,

0 < r < §, that the boundary, 6 = 6(r), is once continuously differentiabl;
so that the tangent angle 1s continuous. (However, this does not pre- E
clude 1lim 46(r)/dr = + ».) We expand the integral expression for

$ 4in (gtg) in terms of r to O(rzlog r). Since the V-state 1is

stationary in the appropriate reference frame, the value of the stream

e — e e — e
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function, ws, is constant on its boundary and so, without loss of

generality, v°(r,8(r)) =0 for 0 <r < §. We write 6(r) as
6(r) = 8, + 8,(r) (3.1)

where eo is the tangent angle of the (right half of the) V-state

at the origin, i1.e., 1lim 6(r) = 8y, and so
0

lim 8, (r) = 0. . ) (3.2)
0

Sincé ws,.the solution of Poisson's equation, (2.1b), 1s once con-
tinuously differentiable in all of :m2; we can expand it 1n a Taylor

series with remainder, or

0 = ¥3(r,0(r)) = ¥3(r,80+0,(r)) = y5(r,0) + 3,¥5(r,0)0,(r), (3.3)

where ¢ o(r) 1is in the open interval between eo apd 90 + el(r).

; Thus,
0,(r) = -4%(r,83)/3,4%(r,a(r)). \ (3.4)
We obtain the possible values of 8y from (3.2), 1.e.,

11m ¥°(r,8,)/359%(r,0(r)) = 0, (3.5)
r+0

where 6, can be substituted for o(r) 4in (3.5) since 1im o(r) = @

r-+0
In those cases where w’(r,eo) $ 0, which includes the corner cases,

oo

’
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we then expand ¢° wup to 0(r2) and solve for el(r) from (3;0).

(To lowest order in r we can replace o(r) by eo.)

3.2 Translating V-states

The limiting symmetric translating V-state consists of two FAVR's

with a common boundary on the y-axis and with vorticity w, = +1

wa

and

= -1. The right FAVR 1s composed of two contour segments, namely

8(r) as described above and 6 = 7/2 which 1s the common boundary.

At the end of this subsection we will show that the two FAVR's of a

limiting-case V-gstate cannot touch at only one point.

(However, we

cannot rule out the possibility of an isolated V-state whose FAVR's

have one point in common.)

For 0 <8<< 1 and r << §, we find that [15]

e (r,8) = [V + o ij cos ¢ dpd¢]r cos 6
' 1

- (w11 + cos Zeo)rzlog r sin 20 + o(ralog r),

where V 1s the speed of the V-state. Note that ¢3(r,8) = 0(r)

(3.6)

if the leading term of (3.6) is non-zero. Thus, from (3.5) cot 8y = 0

so 8, = # n/2. 1If the leading term vanishes, i.e.,

Ve-nrl U cos ¢ dpd¢,
1

then (3.5) yields tan 200 = 0 so 6y = 0 or % w/2.

discuss eo.- 0.
.For 6, = 0, from [15]

We first

(3.7)

AN e
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¥3(r,0) = - (21~ r’log r sin 20 + (2m)7(C;+C,)r? sin 26

L » if ®/2 >0 >0
- (un)'lrz 28 cos 26 - sin 26 +
T cos 20, if 0 > & > -u/2

+ o(r2 el(r)), (3.8)
where
C, = £I p'l sin 2¢ dpd¢ + (1/2)(1 + 2log §), (3.9a)
8
cy = [ o7 1% o (0)b, (3.9b)
0

and Dl(é) 1s that subset of D, whose distance from the origin 1is
> 8. From (3.4) we f£ind that

8,(r) = (a/4)/(-log © + C; + C,) + o((log r)72). (3.10)

Substituting (3.10) into (3.9b) we obtain a quadratic equation for
02 and find that
2 2, -2
C, =% [1og & - C, + ((log 8 - C;)° - (m /74 2Y+ 0((log 8)7°).
(3.11)

The singular behavior of the curve near the origin, where

0;(r) << 1 can be seen from the slope,
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? :
| & - SRR B - 0yt + 02, (3.120)
and the curvature,
; = 28'(r) + rz(e'(r))3 + ro"(r)
| (1 + r(0'(r))2)372
"
T = (8/u)ef(r)/r + o(ef(r)/r). (3.12b)

Note that the tangent angle is 0(1/log r) and the curvature is

0(r~l(log r)72) so that 1im k = =. Also, the velocity at any
0
point (r,8) 1is

1

us=s- 1t p log r cos @ + T (C;+C,)r cos 6

-1 msin 6, w/2>80 >0 2
- (27)7"r|-20 sin 6 + + o(r Gl(r)),

-7 sin 6, 0 > 6 > -w/2
' (3.13a)

1

vVe-w rlogr sin 8 + W (C;#C,)r sin 6

8o that on the curve u = 0(r log r) and v = 0(r).

For 6, = + n/2, we show in [15] that

v3(r,0) = Co r cos 8 + (2m)~t c, 2 ain 20 + o(r? cos e), (3.14)

(21)-1r[29 cos 6 + 7 cos 0] + o(r? el(r)), (3.13b)
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where
Co=V + al II cos ¢ dpde (3.15a)
Dy
and
c, = ff o~L sin 24 dpds. (3.15b)
Dy
Substituting 6 = 6, + 6,(r) 1n (3.14) we obtain
0 = ¥3(r,8,+8,(r)) = Cy T sin o (r) - (2x)~ 1 c, r® sin 26, (r)
+ o(r2 sin el(r)).
(3.16)

If we divide (3.16) by r sin el(r) and let r + 0, we find that

Cy = 0. If we then divide (3.16) by r’ sin 6,(r) and let r + 0

we find that C; = 0. However, C, = 0 1n (3.15b) if and only of
the origin of the coordinate system is on the horizontal line through

the centroid of Dl' That.is, the two FAVR's touch at only one point.

This follows because the integrand of Cys (3.15b), is antisymmetric
about ¢ = 0 and the V-gstate 1s assumed to be s&mmetric about this
horizontal line of symmetry of Dl‘ If we do the same analysis for
8y = -1/2 we obtain the same result.

We now show that this configuration leads to a contradiction.
If the analysis 1is repeated with the origin on this line of symmetry
[13], then we again obtain (3.14) and so, again, C, = O which contra-
dicts the value obtained from (3.15a). To see this we use the numerical
solutions obtained in Section 5 (or in [8]). We estimate the integral
in (3.15a) by taking the limit as x, + 0 of a circle of radius

PPN P
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(1-xA)/2 centered at ((l+xA)/2,0). From Fig. 4 this circle,

which we denote by C(xAY, lies inside the corresponding V-state,
denoted by Dl(xA). Thus,

JJ cos ¢ dpdé > J{ cos ¢ dpd¢ = (x/2)(1 - xA)Z/(l + xA),
Dl(xA) ’ C xA)
(3.17)

and so

at II cos ¢ dpdé > 1l/2. (3.18)

b

From Table I, 0 > V > -.258 ror all the V-states and so C, > 0.2.

(Actually C, = 0.6 for X, = 10'7.) Thus, solutions with FAVR's

0
touching at one point are excluded so the only possible solution is

the corner solution shown in Fig. 3a.

3.3 Rotating V-states

For the rotating V-state we let w, = w, = 41 4in PFlg. 2 and find
in [15]

Vv (r,8) = T I[ sin ¢ dpd¢ - Q¥]r sin 6
D
1

2

+ (hw)'l sin 26, r“ log r cos 26 + o(rz.log r), (3.19)

where {1 is the angular speed of the V-state about the centrold at
(0,7). Note that %(r,8) = 0(r) if the leading term in (3.19) is

non-zero. Thus, from (3.5) tan 6 = 0 80 0, = 0. If the leading
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term vanishes, i.e.,

Q= (my)T ” sin ¢ dodé, (3.20)

D

then (3.5) ylelds cot 20 = 0 so 6, =+ n/4. We will investigate
only eo = + n/4, since the numerical results in Section 6 indicate
that 60 = /4 1s not a limiting case. The two solutions eo = 0
and w/4 are shown in Fig. 3b.

For 6, = w/4, from [15]

¥3(r,0) = ﬁﬂj)’lrz log r cos 20 + (2w)-1(cl+02)r2cos 20

- (uw)-lrz[-znﬂ + (1/2)cos 26 + (m/2)6 sin 26

L » if m/2 > 0 > w/l 5
+ N+ ofr Gl(r)), '
7 sin 20, if w/4 > 8 > -n/2 &
(3.21) ¢
where f
C, = LI p'l cos 2¢ dpd¢ - (1/4)(1 + 21o0g &), (3.22a) g
148) ]
and 5 | é

-1 2
C, = i p — sin Gl(p)dp. (3.22b) i
Thus, from (3.4)
el(r) = [0-(3/8)]%/(log r + 2(cl+02)) + o((log r)~2). (3.23)
e e =




02 and find that

17

Substituting (3.23) into (3.22) we obtain a quadratic equation for

‘ C, = =(1/4)[1og & + 2C; + ((log & + 201)2 - 812[9-(3/8)]2)k]

| + 0((log §)72). (3.24)
: .
| In this case the slope 1s
i
‘ dy/ax = 1 + 20, (r) + 0(e3(r)), (3.25a)
r while the curvature is
. -1.2 3
« = -2([2-(3/8)1m " Le2(r)/r + 0(03(r)/r), (3.25b)
which 1s similar to the translating case, Eqs. (3.12). The velocity

1s also similar to that previously given.

3.4 Elliptical V-state

The analysis in the rotating case above i1s also valid for
analytical V-states since the only constraints we have used are that

’ the origin lies on the V-state and the V-state 1s symmetric about the

y-axis. We will now consider the rotating case when eo = 0 to show

that we obtain the correct result for ellipses.

From [15],
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v3(r,0) = Cor 8in 6 + (21)-¥(C;+Cé)r2 cos 26

5 1-(1/2)cos 208, w/2 > 8 > 0 3
- (1/8)r° | -2 + - + 0(r?),
(1/2)cos 26 ," 0 > 8 > -n/2

(3.26)
where
Cy = vt I sin ¢ dpdé - QF, (3.27a)
Dy
f -1
C, = JJ p ~ cos 2¢ dpdd, (3.27b)
D (8)
and
. 6
'02 = -(1/2) I p”l sin 291(p)dp. (3.27¢)
0
From (3.4) we obtain
8, (x) --{f'@':l" (Cp + Cy+ w0 - (x/B))r + 0(r?), (3.28)
Substituting this into (3.27c) we obtain
PR )
C, = (2C5)™"(c, + ma ~ w/U)8 + 0(5°), (3.29)

80

8, (r) --(éco)‘l (C; + % -~ w/B)(1 + (200)‘1§)r + 0(réd). (3.30)

From Section 6 we find that for an analytical V-state Cy >0 and
Cy+ 0 as the limiting V-state is approached so that « + + =, At

ol DA Wk PG Mo bl
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the limiting V-state the equation of the curve jumps to (3.23).
We now show that 1if the equation for an ellipse in our coordinate

system,

2 2
r = 28%11 6/(c032 Q + 31:2 6), (3'31)
a

is expanded near the origin, the result, r = 2a29/b, agrees with

(3.30). First we substitute (3.31) into (3.27a) and (3.27b) and

obtain
Cy = ml ;%3 - 2], | (3.32a)
and e |
c; = 5 (v/a¥)e+ (3 MIER - 11 + o(s?). (3.32b)

For the ellipse Q = ab/(a+b)? [2] and 1f we substitute for 2, C,
and C; 1in (3.30), we obtain 6,(r) = (} b/a®)r + 0(ré?) which
agrees with the expansion of (3.31) for 6 << 1. (Note that if

a = b then, for arbitrary Q, el(r) = % r/a + O(rsz) as it
should since the circular FAVR 1is a V-state for any Q.)

3.5 Summary
In this section we have examined the behavior of a V-state in

the neighborhood of a singularity. To apply the analysis we put

the origin of the coordinate system at the point in question and then
require that the V-state can be oriented to be symmetric about the
y-axis as in Fig. 2. This can be done for both the symmetric dipolar
translating V-state and the m-fold symmetric rotating V-state as shown
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in Figs. 4b and 7. (The analysis can also be done without assuming

symmetry.) In the translating case we find that the difference in
tangent angles at a singularity can be only n/2. We examine this
corner case further and find that for r << 1 the curvature, «,
is O(r'l(log r)'a) which indicates the difficulty in numerically
calculating the V-state. In the rotating case we find that the
difference in tangent angles at a singularity can be 0 or =n/2.
Again, for the corner case Kk = O(r'l(log r)‘z). From numerical
results O corresponds to an analytical V-state and w/2 to the

limiting state for 3 <m < 6 (and we assume for all m).

T - U
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4, NUMERICAL ALGORITHMS

ew second- and third-order accﬁrate algorithms.
econd-order accurate representation of the velocitiles

(u,v)aD, namely a trapezoldal discretization of (2.5)

(1)
N, N ( 1)
-1 2 . ) (%)~ 511;’ Y~ “115)
3=1 Y 1=1 [(x -Egii)é + (yk-nii%)alk
x (g{d), -3, (4.1)
) e aDJ, NéJ) is the number of points on GDJ,
tions are given by
fi4 = 5 (£,4F541) (4.2)
léf; = [(x, - E(J) 2 4 (yk-nij))zlk.
Algorithm

rder accurate algorithm is used to obtain trans-

or 1of7 < x, £0.90 and rotating m-fold symmetric
5 <R, < R:(m), where R:(m) is the value at the
rges more rapidly than the third-order iterative
resented in the next subsection. However, for the

tical contours the third-order algorithm :ives more




T T——— o— —w— — Y T e -

22
accurate results as shown in Sections 5 and 6.
We use the .second-order accurate discretization of (2.9),
uk+kAyk - (vk+k - V)Axk =0, 1<k<N, (4.471)
or
ukHiAyk = VieaslX t (Q/2) Ri =0, 1l<k< l\i, (4.U4R)

where Af, = f .. - f and (uk+¥,vk+%) are defined in (4.2).

Here, N + 1 1s the number of points on the segment of the contour
for -w/2 < 8 < 0 1in the translating case and -7/2 < 6 < w/m - % m

in the rotating case (the solid lines in Fig. 1). We define

(xk-xo,yk) = R(8,)(cos 8, ,sin 8,) (4.5)
where X, = 0 for the limiting translating V-state and all rotating l
V-states and x = % (xA+xB) for the analytical translating V-states.

Substituting (4.5) into (4.4), we obtain ‘

Rk" Freaafyss =0 1 <k <N, (4.6a)

or, alternatively,

R .

N+1, (4.6) ‘

IA
~
IA

-1
Be = Peafey =0, 2
where Fk+§ i1s defined as

uk+k,31n 041 - (vk ~-V)cos Oal

F s (4.7T)

’! k43
:

or
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sin B -V cos 8 + (Q/2)R
“k+s +1 Ktk k+1 k+1 4.7R)

kik Uy sin Bk - vk+% cos ek + (Q/é)Rk .

F

-

To obtain convergent algorithms, we find it necessary to use a
three-point scheme and a relaxation procedure. First we average (4.6a)
and (4.6b) to obtain

-1 = - i -
- 2 Fk—k k-1 + Rk ~ 3 Fk+kRk+l 0, 2 <k <N, (4.8)
Thils discrete representation of our

where Rl = RA and RN+l = RB.
i1f we

nonlinear integro~differential equation can be solved for Rk
Thus, 1f we have just completed.the n-th iteration we

know Fk+k’
know Rén) and so can find (uéﬁ%, é?%) from (4.1). We then cal-

culate the new velocity by summing (4.4) to obtain

e X[ul((l:;)! (W) o™/, oxp) (4.9m)

or

a(n) < 5 2 [uﬁﬁiAyk ~ ;2% (n)]/(R (4.9R)

Thus, we can calculate Fﬁﬁi by (4.7) and solve the linear equation
R(n+1) by "relaxing" Rih) and

(4.8) for ﬁk - §£n+l). We obtain Ry
R£?+l) by

R]in+l) -t §£n+l) + (1-u*)R£n) (4.10)

where u®* = 0.6. We discuss the initial guess used in the appropriate

sectlon.

4.3 Third-Order Algorithm
Chrouo;ogically, we first obtained the second-order algorithm

- C e e e s e e
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given in Section 4.2 but found that in the limiting cases it could
give inadequate results. A third-order algorithm is readily obtained
by using the differential equation for . R, Eq. (2.10), and welghting
three adjacent Rk in the manner described below. First, we dis-

cretize (2.11) using a midpoint method
AR/88, = MyaRys . . (4.11)

We rearrange and obtain

Rk - Gk+st+1 =0, 1<k<N, (4.12a)
or
~1 -
R = O yRe 1 = Co 2 <k < N+, (4.12p)
Here GkH2 1s defined as
- 1 1
Gk+k = (1 - 5 Ak+¥A9k)/(l + 3 Ak+%A9k), (4.13a)
where
Ak+s z A(uk+%, Viti? Rk+&’ (sin 6)k+%, (cos e)k+%)(u o)
.13b

and A is defined in (2.11). The third-order property is achieved
by welghting Rk in the followlng manner:

- -1 . |
LR, = -B 0L R ) + Ry = (180G Ry =0, 2 <k <N.  (4.14)

The local analysis, carried out in Appendix A, shows that terms

0((Aek)3) cancel exactly if

8, (88, ;)3 + (1-8,)(20,)3 = 0. (4.15)

— e - s - C e o ———— e —l— -
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(The algorithm discussed in Section 4.2 could be made third-order
by the same type of procedure but 1t was easiér to expand Gk+k’
(4.13), rather than Fk+%, (4.7).)

In the translating case 1t was found that convergence could not
be obtained for the limiting V-state, even for the third-order
algorithm, when the boundary condition at the singularlty was a fixed
angle as opposed to a fixed point. (This 1s discussed further in
Sections 5 and 6.) The solution oscillated over a small range in
the neighborhood of the singularity. '

Hence, to obtaln convergence we use a two-step procedure: a
method of stabilization [16] followed by a method of relaxation. For
the method of stabilization we replace LR, = 0 in (4.14) by a dis-

cretized version of LRk + uatRk = 0 where Rk + R as t +» =, That

k
is, we solve for the (n+l)st iteration by

L(Rén)) ﬁﬁ“*l) + u(§£“+1) - Rﬁn)) =0, (4.16) l
where we have introduced the intermediate variable §£n+1) and
u = 0.1. We agaln obtain R£n+1) by "relaxing" Rin) and §£n+l)

by (4.10). (Note that (4.10) and (4.16) are readily combined into
one equation in out program.) - If By = 1/2 1n (4.14) the algorithm
1s second-order accurate but not identical to the algorithm in
Section 4.2. We have not used this second-order algorithm in this

paper.
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4.4 Summary and Convergence Criteria

The second- and third-order algorithms are summarized as

follows:

(1) Compute (uéﬁi,véﬁi) from Rén) using (4.1)

v(n)

(2) Compute or Q(n) from (4.9).

(3) Compute Féii from (4.7) or Gé?& from (4.13) for the second-

or third-order algorithms, respectively.

(4) Compute R£n+l) from (4.8) for the second-order algorithm or

f(n+l) from (4.16) and R(n+l)

Ry K

algorithm. In elther case use Gaussian elimination to invert

from (4.10) for the third-order

the tridiagonal matrix.

(5) Continue the iteration until the error criterion is satisfied.

A.run is terminated if

N+1

+1
._ggi_ml({n YoM <. (4.17)
where
5 x 107 for translating states
€ =

5 x 10"6 for rotating states.

When convergence 1s obéained we f£ind that the original integro-

differential équations are satisfied to 5 x 10'8, il.e.,

PPV

l.“
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mix l“k+kAyk - (vk+%—V)A;kl <5 x 108

or

2 -8
m;x |uk+;§Ayk = Ve dX + (2/2)8R | < 5 x 1077,

This accuracy was verified on the DEC-10 (a 36-bit machine)
at the University of Pittsburgh by continuing runs in double-
precision once the required accuracy was obtained in single-

precision.
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5. NUMERICAL CALCULATION OF TRANSLATING V-STATES

5.1 Analytical V-gstates

To compute the sequence of states with 10~7 S X, £00.90, §e
use the second-order algorithm. For case 1 the initial étate is a
half-circle of radius 0.05 centered at (xo,O) = (0.95,0), with N + 1
equally spaced nodes, i.e., A6 = w/N. For the remaining cases in the
sequence, the initial state is obtained by expanding linearly the
previously obtained solution with (xO,O) = (%(1+XA),0). For cases
1-14, when the error, e, (4.17), < 10"'l we adjust the nodes so
that the distance between the adjacent nodes 1s inversely proportional
to the curvature, Rk+kAek « Kii%. This makes the local error the same
in each interval [17]. For cases 15-17, A8, 1s the same as obtained
for case 14, With this discretization, we continue iterating until
convergence is obtained. ) l
The results obtained with the second-order algorithm and N = 120
are summarized in Figs. 4 and 5 and Table I. Fig. 4a represents one
sector, i.e., 1/4 of the V-state, for cases 1 (xA = 0.90) through
13 (xA = 10‘"). To show the power of the algorithm we have enlarged
the scale by ~ 400 in Fig. 4b and show cases 14 (xA = 10'5) through
17 (xA - 10'7). We observe that the contours are nested and tend to a

limiting contour, the lowest in Fig. 4b, discussed below.

In Fig. 5 and Table I we present properties of the sequence of

SNPUTRR

states where A 1is the area of one side, P 1is the perimeter, X
is the x coordinate of the center of area, V 1is the translational
speed, V/V, 1s the normalized translational spéed where V, = A(uwi)'l

is the translational velocity of two point vortices with circulation




A —— e ——— —————

29

+ A and separation 2Xx, R = (A/n)%, H = max|{y| is the maximum
vertical extent of a sector, and a = 2H/(1-xA) i1s the aspect ratio.

The dots in Fig. 5 are the results of Pierrehumbert (8] and the com-

parison 1s excellent except for H 4in the limiting case)as discussed
below. The convergence criterion that ¢ < SXIO'7 1s obtained with

the second-order algorithm in less than 70 iterations. An iteration

step with N = 120 requires 8 seconds of CPU on the DEC-10. Most of

this time is consumed calculating the velocities at the nodes. A thorough

discussion of accuracy and sensitivity is given in the following subsectior

5.2 Limiting V-state (x, = 0)

As indicated in Fig. 4b the V-states tend to a limiting state. In
Section 3 we observed that a limiting contour could approach the y-axis
only when the tangent angle at the axis, Gy 1s 0. In this subsection we
investigate the sensitivity of this approach angle with the second- and
third-order algorithms. The following paragraphs dlscuss the boundary
conditions, initialization and discretization of this nonanalytical state.

We assume that the boundarles of both contours of the limiting V-
state lie oﬁ the y-axis from (0,-y*) to (0,y*). We let the center
of our polar coordinate system be at (0,0) and compute the veloéities
(uk,vk) in two parts. First, we do a numerical integration, Eq. (4.1),
for -m/2 < @ < 0 as previously and, second, we do an analytical in-
tegration of Eq. (2.4) from (0,0) to (0,-y*) as discussed in [1].

Two types of boundary conditions are used at 6 = -n/2. PFirst,
to find the corner solution we set dy/dx gmen/2 ™ 0 by fitting a
quadratic polynomial, symmetric about the y-axis, through the second

and third points. The resulting matrix can be transformed
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to a tridiagonal form and solved as previously. This limiting case
is shown in Fig. 4b. We call this the corner boundary condition.
Second, we fix the point on the y-axis, R(-w/2), which enables us
to determine the sensitlivity of this limiting V-state.

Becausevof its singular character, as discussed in Section 3, the
limiting case 1is approached very slowly and the selection of a "good"
initial state 1s important. As described in Appendix B the initial
state 1s derived by smoothing the last analytical state (i.e., No. 17,

X, = 10‘7) with a high density of nodes near the corner as shown in

Fig. Ub. We find, using the third order algorithm and the corner boundary
condition, that y* = 1.66855, 1.66898 and 1.66911 for N = 30, 60 and
120, respectively. The convergence 1s very slow as the solution

exhibits a damped oscillation around y* and requires = 3,000 iterations
to satisfy the error criterion. The second-order algorithm solutions do
not converge but simply oscillgte slowly about y* wilth a range of
=0.001.

The calculations of y* are consistent with the fact that the
algorithm is actually only second-order accurate near the y-axis because
(u,v) cannot be expanded in a Taylor series at the singu;arity (see
(3.13)). Using second-order Richardidon extrapolation on N = 60 and
120, we £ind to five significant figures

1.6691 < y* < 1,6692. (5.1)

Note that Pierrehumbert's limiting V-state has a cusp for the
singularity and y%* = 1.705 (= 3.41/2). It seems to us that his dis-
tribution of nodes in the neighborhood of the singularity was in-

Y e - -
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adequate since we could obtain "V-states" with a, = -1/2 and
+m/2 when the neighborhood of the singularity was inadequately re-

solved. (In Fig. 4b, Ax, = 1.4 x 107°.)

1
In Fig. 6a we have plotted the limiting V-state in the neighbor-
hood of the singularity for N = 60 and 120 (the dots). This is a
magnification of = 30 over Fig. 4b. Note that in Fig. 4b the tangent
angle at x = 0 does not Seem to be 0 (even with a magnification of
%= 200) but is seen to be much closer to 0 in Fig. 6a (a magnification
of = 6,000), which shows the singular nature of the curve.
Also in Fig. 6a we plot the equation for the curve (the solid
line) from Section 3, Eq. (3.10), with parameters C, and C, obtalned
from the solution with N = 120, C1 has been calculated numerically
from (3.9a) and C, from (3.11). For & = 0,000014, C

+ C, = 0.1196

1 2
1+ Co = .1106. In Fig. 6b we continue

while even for 6 = 0.049, C
this comparison on a larger scale to show the quality of the asymptotic
formula. Also, the velocity of the V-state as calculated from (3.7)

1s -0.25797 while numerically it 1s -0.25793.

To determine the sensitivity of the algorithm we use the second
boundary condition, i.e., fix R(-n/2), near y¥%*. 1In Table II we show
the results using both the second- and third-order algorithms for
N = 60 where the x coordinates of the nodes correspond to those in
Fig. 6a. Note that in all the cases the solution tends very rapidly’
to the corner solution. (We have given 7 significant figures for
comparison purposes, but trust only the first 5.) For example, the
maximum difference in R; 1s 1.673000 -~ 1.668973 = 0.004027 and in
RS is 0.000060 (where x5 = 0.00013). In all runs using the fixed-

point boundary condition.oonvergcﬂce is obtained in =100 iterations.
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6. NUMERICAL CALCULATION OF ROTATING V-STATES

6.1 Analytical V-states

We compute the sequence of states for 1.05 < R < Rﬁ with the

A
second-order algorithm, where R; is the value obtalned for the limiting

V-state. Our initial state 1s, for -m/2 < 6 < 5m - % L
RO (e) = B, + (1-R,)8 (2-0 ) (6.1)

where 5m = 71/m, where O = (8 +%-.1r)/5m and A8, 1s constant. Fig. 7
shows (x,y) and curvature plots for one analytical V-state and the
limiting V-state for 3 < m < 6. In the curvature plots the abscissa

is the arclength scaled so that it 1s 0 at R, and 1 at RB' The

A
properties of the analytical V-states are given in Table IIIa. The

limiting cases (*) are given for comparison and discussed below.

6.2 Limiting V-state

For the limiting V-state our initial state is
R (o) = B, + (1-R,) 0%(3-20) (6.2)

where R, = 1.73, 1.44, 1.32 and 1.24 for m = 3,4,5 and 6, respectively.
The angular difference AGk is either constant as in the analytical

case or increases nearly linearly with k as discussed in Appendix B.
For the latter we start with iy = 0.1*, 0.01°® or 0.001°. We again

use two types of boundary conditions at o0 = -x/2: <the corner

boundary condition, dr/dxl' e -g/2 ® *1; and the fixed-point boundary

A e s e
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condition, i.e., R(-w/2) = R,. This corner boundary condition 1is
obtained by using a linear combination of either the first 3 or 4
points, as described in Table IIIb.

Our results for 3 < m < 6 are contained in Table IIIb for the
corner boundary condition. Since the total number of points on the
V-state 1s 2mN the time required for each iteration increases as
m2 and so we will only consider the case m = 3 1in detail. At the
end we will comment about the other cases.

We perform a sensitivity study for m = 3 using varioug
algorithms, boundary conditions and discretizations as shown in Table

IIIb. With the "linearly" increasing discretization (Ael = 0.1°, 0.01°

and 0.001°) we find

95 = 0,30120 + 0.00004,"
(6.3)

RY = 1.7352 + 0.0003.

In the rotating case, unlike the translating case, both the second-
and third-order algorithms converge to the limiting V-state for the
corner boundary condition. The second-qrder algorithm converges in
= 500 iterations while the third-order algorithm requires = 2000
iterations because the stabilization and relaxation procedures delay
the convergence. Since the second-order algorithm is also much faster
with the fixed-point boundary condition, we use only the third-order
algorithm when high accuracy is required.

The range of existence of @, for 2 <m < 6 1s shown as the

s0lid vertical lines in Fig. 8 and Q%, the lower end of these lines,

can be fit with
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a2 = 1 (n-2)[—5—B=1:19 1 (6.4)
m - 2.07lm + .2085
where |§; - Q;I < 10‘". In previous analytical work [11] the

lower end of the range of existence was given as (1/2)(m-2)/(m-1),

shown in Fig. 8 as the dots. This result is incorrect because Burbea
linearized about the circulér V;state and interpreted his results as "
being valid in the nonlinear region. In previous computational work
[io] numerical solutions were obtained below our range of existence.
For exaﬁple, for m = 3 they presented a solution at Q = 0.2822
which had regions of negative curvature. Thése incorrect results are
probably due to ilnadequate discretization procedures and to the fact
that spurious "solutions" can be obtalned for RA > R;, as we will
discuss below.
Since the range of existence of Q  was missed previously 0],
we present the results of several sensitivity studies for m = 3 and l
RA near R;. First, the dots in Fig. 9 show the maximum curvature ;

as a function of R, obtained with the third-order algorithm, N = 60

Ry > 1.70. The x's are due to Burbea and Landau o] and we have not

and a discretization of 0.01° for RB < 1,70 and 0.,001° for !
|
|
i

plotted their last value of k = 236 at R, = 1.923, which is well
to the right of the figure. i

Second, we .used the fixed~point boundary condition, both algorithms | |
and various discretizations to obtain the results in Fig. 10a, where ‘
we have plotted the tangent angle at the singularity,i.e., a, Vs RA. i
a* 1-735 < Ry < 1.736,;
using the third-order algorithm and 0.01° (0.001° is not shown since !

The solid line shows the small range obtalned for R

it 1s undistinguishable from 0.01°). Also note that all solutions cross
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ai = 45° gt RA.z 1.735. In Fig. 10b we show the behavior of the
contours near R§ using the third-order algorithm and 0.001° where
Ry, = 1.73333, 1.73493 and 1.73559.

As shown in Fig. 10a, we can also obtain "solutions" for RA > R§
and, indeed, for o, = 90°, This 1s due to the fact that the vgrious
discretized forms of Euler's -equations have different solutions thah the
continuous equations, Egs. (4.1). For larger values of Ry, we still
can obtain convergence, but we find that the solutions behave‘in a strange,
algorithm-dependent, noncontinuous fashion. For example, for the third-
order algorithm with N = 60 and 0.001° the solution jumps back from

1 A
the remalning cases, R(ea) decreases as RA increases until for

@ = 90° to a, = 0° as R, 1s increased slightly (to =1.7358). For

R, = 1.80 we find that R(8,) =1 (= Ry) for 2 < k < N+l so that the

A
solution looks like a circle with a sharp spike. We take thils as evidence

that we have passed the range of exlistence of steady-state solutions to
the continuum equations, which do not have V-states with cusps.

Finally, in Fig. 11 we compare the numerical results (the dots) for
the 0.01° run with the 4 point boundary condition in Table IIIb to the
formulas in Sec. 3, Eq. (3.23). C, has been calculated numerically
from (3.22a) and then C, from (3.24). For § = 0.00044 then

C, + C, = -0.692 while even for ¢ = 0,085, C,+C, = -0.694. The

1 2
comparison is excellent for the entire sector, -m/2 < 6 < -n/6. Also,

2 1s 0.30122 from (3.20) while it 4s 0.30121 in Table IIIb. In Fig. 12
we compare an analytical V-state, Eq. (3.30), with the solution of

the third-order algorithm, N = 60 and 0.001 for R, = 1.7349. In
this case the equation requires 1 as well-as the nodes on the con-

tour from the numerical calculation. Using the value of Q = 0.301170

S ——
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we find that C, = 0.00052, c, = -4 .4489 and the curvature at R,

0
obtained by differentiating (3.30) is «x = 1495, which agrees with

the numerical solution to three significant digits. We consider all
of the above a sufficient validation of our calculations of the limiting
V-states.

The only difficulty we have encountered for _3 <m< 6 1s that
the curvature oscillates near 8 = -n/2 as the limiting V-state is
approached. 1In fact, the calculations of the V-states in Fig. 7 were
done with the nodes equally spaced in angle (see Table IIIb) and for
m= 4,5 and 6 i1t 1s just possible to see wiggles in the curvature plots
near the singularity (i.e., s =0). (For m = 3 it 1s possible to
remove the osclllations by a Judicious cholce of discretization while
for 4 <m< 6 the size and location of the oscillations change with
the discretization but do not disappear.) However, for 3 <m< 6, the
curvature does have the correct sign at 6 = -v/2. That is, from (3.23) ‘
the curvature at R, should be + « for m = 3 and 4 since (3/8) - a > 0,
while it should be - = for m> 5 since (3/8) - Q < 0. With

sufficient nodes we believe these oscillations would disappear.
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7. DISCUSSION AND CONCLUSIONS

We have presented new accurate (and fast) algorithms and refined
procedures for computing symmetric translating and rotating V-states
of the Euler equations in two dimensions. These include limiting non-
analytical contours with corner singularities that are compared with
analytical solutions [15]. The agreement 1s excellent! These
singularities were missed 1n previous numerical work [8,101.

Burbea and Landau [10] proposed calling the rotating V-states
"nonlinear Kelvin waves". However, "V-states" (vortex states) seems
more appropriate since there are already at least two typeé of Kelvin
waves aud since Deem and Zabusky first showed their existence [4] and
coined the expression.

In all but the limiting cases the second-order accurate algorithm
converges to the V-state quickly, both in the number of iterations
(x100) and the CPU time. The CPU time per 1iteration is 0(N2) compared
to Newton-Raphson which is 0(N3). The algorithms of Pierrehumbert [8]
and Burbea and Landau [10] are also 0(N2).

Our development of the third-order algorithm may seem ad hoc but
came about in a search for an accurate method to.calculate limiting
V-states. We have used refined procedures to validate our results in-
cluding various discretizations in the neighborhood of the singularity
and two boundary conditions. In this paper we have not attempted to
find procedures to minimize computation time. However, since most of
the time in an 1iteration 1s taken up calculating the velocitles, in
recent work we have recalculated them every 20 iterations when

e < 10‘". We find it reduces the computation time by a factor of 3.-
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We are presently using the new algorithms and have obtained
asymmetric translating V-states and V-states with nested contours.
The latter involves the solution of coupled integro-differential
equations, one for each contour. However, there is a constraint

that the veloclties V or Q, for all contours must be equal.
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APPENDIX A: DERIVATION OF A TIIIRD ORDER ALGORITHM

Since the velocities (uk,vk) are calculated by the trapezoidal
rule (4.1), they are accurate to second order. Here, we show that
we can obtain a third-order algorithm by'properly weighting two
equations.

Let A and R be the solutions of R'(8) = iﬁ, (2.10), (where
primes denote differentiation with respect to 6), and R, = R(ek)

be the solution of our self-consistent discrete representation (4.11).

Let
Ak+k = Ay ¥ €ty ? (A.1)
where et = 0((Aek)2). Then after some algebra (4.12) yields
~ ]

Grgy = Opang * (1-€) 488, ) + 00(48,) .), (A.2)
where ak+k z G(ik+k)’ If we expand R, in (4.11) about ﬁk we
obtain

f -8, R .. =E. (803 + 0cs0)" (A.3)

k= OpesPieer = Biaa (40 K o -3).
where
E(8) = (R"/24) - (AR"/8). (a.4)

If we substitute (A.2) into (4.1la) and subtract (A.3) we obtain

~ a ~ ~ 3 u
(A.5)

A T




——— A e e e

P

We apply the same technique to (4.11b) and find

A ~ fod A-l 3
(Re-R) - B (R 1R ) = e imo, 1 BrR ) - B (a0, 3 = 0w

(A.6)

To remove the leading order error, 0((A6)3), iri (A.5) and (A.6), we
multiply (A.4) by 1 - B8, and (A.5) by B, to obtain

A-l A A ~ A
“B1 Gy, (Rpe_1-Ry 1) + (R=Rp) = (18,08 (R 1 -Ryyy)

=1 3
+ [Bk(-ek_;sAek_1 G aRe 1 * Ek_%(Aek_l) ) +

(1-8,)C eppady R * By (00031 = 0ca)h). (a.7)

Thus, we must choose Bk so that the term in brackets is 0((Ae)”),

namely

3 3
-8, (a0, )3 + (1-8 )(20,)7 = 0. (a.8)

This follows because, to lowest order, a;}% = ak+% =1, R._; = Ryy>
2 2 :

Eex ™ Epans o c(88,_1)° and e, , = c(88,)° (for some c),

where the latter three expressions are valid if the contour is analytic

in the region from k -1 to k + 1.

e —— e emin e

Jeniie - -~y ) ’ -

.



e e ama

I

e s oo

APPENDIX B: INITIAL DATA AND DISTRIBUTION OF THE NODES FOR LIMITING
CASES. '

B.1 Translating Case

In order to obtain the initial approximation R(°)(e) we begin
with the nodes, {(xk,yk) | 1 < k < N+1}, from the 17th state, i.e.,
X, = 10'7. We find the value of k at which Yy 1s a maximum, say
k = K. Then we modify all (xk,yk) for k < K+2 by
x! = x.,.[(k-1)/(K+2)1°°7, 1 < k < K+2
k K+3 L] — — ’
to obtain a nearly geometric ratio and

Y = P(x}), 1<k < K+2,

where P(x) 1s the unique quadratic function satisfying Yk+3 = P(x
and dP/dx

k+3) s

= P(x = 0,

IK+5 K+5) x=0

B.2 Rotating Case

The interval -m/2 < 6 < §m-n/2, where 8m = n/m, is divided into
N + 1 angles by

8, = -1/2 + Em[(l‘rL)(k'l)/N - 1]/L, 1 < k < N+1.

k

For m=3 and N = 60 4if Ae, = 0.01° then L = 691, AGN = 6,2°

1
and the ratio of the largest A6 to the smallest is = 620. If

88, = 0.001°, then L = 9950, doy = 8.5° and the ratio is = 8500.
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TABLE II

The Limiting Translating V-state in the Neighborhood of the
Corner (N = 60).

Rli R

Algorithm oy Rl R2 R

3 5
89.3° 1 1.665000 1.668862 1.668942 1.668964 '1.668972
37.6° ] 1.669001 1.669015 1.669012 1.669010 1.669006
2nd -0.8°|1.669015 1.669014 1.669012 "1.669009 1.669005
-13.2°11.669021 1.669014 1.669012 1.669009 1.669005
-89.7°|1.673000 i 1.669162 1.669069 1.669040 1.669023
|
89.7° | 1.664974 1.668814 1.668894 1.668915 | 1.668924
42.0° | 1.668956 1.668973 1.668970 1.668967 1.668963
3rd -0.5° | 1.668973 1.668972 1.668970 1.668967 1.668963_
-23.4° | 1.668980 1.668972 1.668970 1.668967 1.668963
-89.7° | 1.673000 1.669162 1.669069 1.669040 1.669023
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Properties of Rotating V-states -

Table IIIa

n R, Q A P 1/Rg

3 1.05000 0.33310 3.2967 6.4440 0.95238

1.22128 0.32843 3.7967 7.0463 0.81881

1.39256 0.31996 4,2382 7.7082 0.71810

| 1.56384 0.30948 4,.5909 8.4021 0.63945

#| 1.73512 0.30122 4.7291 9.0652 0.57633

y 1.05000 0.37460 3.2947 6.4488 0.95238

1.14709 0.37153 3.5684 6.8154 0.87177

1.24418 0.36620 3.8046 7.2310 0.80374

1.34127 0.35938 3.9870 7.6811 0.74556

| 1.43836 0.35395 4,0546 8.1380 0.69524

5 1.05000 0.39945 3.2927 6.4555 0.95238

1.11587 0.39705 3.4726 6.7259 0.89616

1.18174 0.39313 3.6263 7.0389 . 0.84621

1.24761 0.38815 3.7426 7.3859 . 0,80153

# 1.31348 0.38425 3. 7842 7.7534 0.76134

6 1.05000 0.41596 3.2909 6.4641 0.95238

1.09855 0.41395 3.4193 6.6827 0.91029

1.14711 0.41087 3.5284 6.9388 0.87176

1.19566 0.40701 3.6097 7.2271 | 0.83636

#| 1.24421 0.40407 3.6375 7.5415 0.80372
'Designa$e the limitimg cases as ¢iscussed in $ection 6.2.




Properties of the Limiting Rotating V-states

TABLE IIIb

m| N |algorithm | BC | discretization® ¥ R¥ A 1/3;

31| 60 2nd 3 1° (¢) 0.30126 | 1.7331 4.7273 | 0.57701

' 60 2nd 3 0.1° (L) 0.30123 | 1.7349 4.7280 | 0.57640
L 60 2nd 3 0.01° (L) 0.30122 | -1.7349 4.7281 | 0.57639

60 3rd 4 0.01° (L) 0.30121 | 1.7353 4.7308 | 0.57626

60 3rd 4 0.001°(L) 0.30117 | 1.7355 4,7337 | 0.57620

120 2nd 3 t (L) 0.30124 | 1.7349 4,7283 | 0.57640

b i 60 2nd 3 0.75° (C) 0.35392 | 1.4381 4.0541 | 0.69537
60 2nd 3 0.01° (L) 0.35397 | 1.4383 4.0551 | 0.69528

5| 60 2nd 3 0.6° (C) 0.38419 | 1.3137 3.7840 | 0.76123

: 60 2nd 3 0.01° (L) 0.38429 | 1.3133 | 3.7842 | 0.76143
6| 60 2nd 3 0.5° (C) 0.40399 | 1.2446 3.6376 | 0.80350
60 2nd 3 0.01° (L) 0.40411 | 1.2u41 3.6375 | 0.80382

between these nodes.

a C = Constant, L = "Linearly" increasing
+ Corresponds to 0.01°

-with N = 60 and with an additional node midway




FIGURE CAPTIONS

Figure 1: Schematic and notation for V-states (the lines of symmetry

are dotted. (a) Translating. Dipolar vorticity, W, =-w,.

(b) Rotating. The FAVR shown has 3-fold symmetry.

Figure 2: Schematic and notation for a representative FAVR used in
the analysis in Section 3. (Only in this section 1s the

origin of the coordinate system at the singularity.)

Figure 3: Schematic showing the local behavior of the limiting V-state
near the singularity at the origin. The possible values of
8, are described in Sectlon 3. (a) Translating. The
vertical line is the line of intersection of the two FAVR's.
(b) Rotating.

Figure U4: (a) A sector of the translating V-states for cases 1 through !
' 13 given in Table I. (b) A ﬁagnified view of the V-states

in the region of high curvature for cases 14 through 17 and

the 1limiting case (tﬁe lowest curve). The dots are the nodes

used in the numerical calculation.

Figure 5: Global properties for one contour of the translating V-state:
| A (area); P (perimeter); X (x coordinate of the centroid); '
anda, V/V, (the normalized speed). The dots are the corres-

ponding values from [8].




Figure 6:

Figure 8:

Figure §:

?
’A{n

Figure 10:

A magnified view of the corner for the limiting trans-
lating V-state. (a) The dots are the numerical solutions
obtained with the 3rd order algorithm and the corner bhoundary
condition for N = 60 and 120. - The solid line is the local
solution, (3.10), fit to the N = 120 solution (b) The

comparison of Figure 6a on a larger scale.

Rotating V-states and their curvatures, k(s), for 3 < m < 6.
(The arclength 1s normalized so s =0 at 6 = - % 7 and

s =1 at w/m - % 7.) The dashed curves are Ry = 1.39256

(m = 3), 1.14709 (m = 4), 1.11587 (m = 5) and 1.09855 (m = 6)
in Table III. The solid cufves are the limiting V-states.

Range of existence of rotafing V-states for 2 < m < 6. The

dots are the lower end of the range from the incorrect l

analysis of Burbea [11]. :

Maximum curvature versus RA

The dots correspond to the third-order algorithm (used with-

for m = 3 protating V-states.

= ° '
Ael 0.01° for RA

x's correspond to the results in [10].

< 1.7 and 0.001° for RA >1.7). The

A study of the behavior of the m = 3 rotating V-states near |
Rg using the fixed point boundary condition. (a) a; 1s the
tangent angle of the contour at 6 = -x/2. The algorithms

and discretizations are: (A, dotted linef 2nd order and 1°

(constant); (B, dotted-dashed line) 2nd order and 0.1°




Figure 11:

Figure 12:
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("Linearly' increasing); (C, dashed line) 2nd order and
0.01° (linearly' increasing); (D, solid line) 3rd order
and 0.01° (Linearly" increasing). (b) The behavior of

selected contours near R§ for the 3rd order algorithm

and 0.001° (Llinearly' increasing).

A comparison of the limiting m = 3 rotating V-state for
-7/2 < 8 < -7/6 using the third-order algorithm with 0.001°
(the dots) and the analytical formula, Eq. (3.23).

A comparison of an analytical m = 3 rotating V-state,
R, = 1.73493 (the middle curve in Figure 10b), with the
analytical formula, Eg. (3.30).

-







9(r)=9o+91(r)

TN e ‘0
] 0«

. ————————— . e e -




Tt

....
3

e by
(®)

(0‘0)




| ‘
]
"3
y
i :
[
| 1.669
1 S
2
0 10.005
J
—1.667- K\
15
s y
-1. 669__.-»--'""
| (v)
i
. Fl'g 4. 3 :
o 'A |
| | d
i N




8 ’_..-0.—-4--0—-0—-0--0 - 1

Va7,

- . s T e e o
o R 5 b2 SR R R i
.







————

Fig. #




.ar

0.25 +

Fc.',. &8




o X \'::?12: ‘ftm,_:“A . . ]
g Tl ) L 2T e

P <0
‘.L——.__,_‘.._
e




s ——— -

1.75

rtTvjovevyd

1.73 1.74
RA
(a)

1.72

| Fca 10

oy

e tze T.,I 1




0.005







0 0.001
-1.734 - - - -

e i s R R S N R







